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but the results of a simulation are obtained in about 
30 minutes. 

If suitable indexes of efficiency are chosen then the 
same principles can be applied rigorously to other 
situations in X-ray crystallography with equal or 
greater profit. 
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Abstract 

McConnell & Heine [Acta Cryst. (1984), A40, 473- 
482] have shown that an incommensurate (IC) struc- 
ture may be fully described as an average structure 
plus two pure component difference structures C1 
and C2 modulated by c o s ( Q . r )  and s i n ( Q . r )  
respectively, where the symmetries of CI and C2 are 
related in a precise way. This result was derived from 
the conventional Landau theory where the symmetry 
is specified by an irreducible representation of the 
space group of the average or disordered structure. 
It has also been shown by de Wolff, Janssen & Janner 
[Acta Cryst. (1981), A37, 625-636] that an IC crystal 
has the symmetry of a four-dimensional space group; 
the papers discussing these superspace groups 
describe the modulation in terms of only a single 
component. It is proved here that the two descriptions 
are identical in content, showing that the structure of 
a superspace group implicitly requires the existence 
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of both CI and (72, and that their symmetries are 
uniquely related in this formulation as in the 
McConnell-Heine theory. Two one-dimensional 
examples are discussed and NaNO2 is considered in 
detail. Although the McConnell-Heine theory was 
formulated in terms of the sinusoidal modulation 
which occurs just below the transition temperature, 
it is shown that the symmetry properties derived in 
that theory continue to be valid as the modulation 
'squares up' at lower temperatures. 

I. Introduction 

In recent years it has become recognized that incom- 
mensurate (IC) modulated structures have very pre- 
cisely definable symmetry. Since the IC modulation 
destroys the regular lattice periodicity, it had at one 
time been felt that the symmetry was essentially lost. 
But this is now seen not to be the case. Given the 
lattice structure and the modulation, the structure is 
determined throughout all space, implying a correla- 
tion of essentially infinite range. This situation is quite 
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different from the case of an amorphous solid where, 
in spite of local order, all long-range correlation is 
lost. 

Broadly speaking, two approaches have been pub- 
lished to describe the symmetry precisely. One of 
these involves the use of one (or more) extra coordi- 
nates, r, to describe the phase of the modulation as 
a fourth dimension in what is termed superspace. 
Since shifting the modulation by one wavelength 
(phase of 27r) leaves the material unchanged, it is 
invariant under all translations by 2zrn (n an integer) 
in the r direction, giving a four-dimensional space 
group. A table of the four-dimensional superspace 
groups has been given by de Wolff, Janssen & Janner 
(1981). The alternative description writes the struc- 
ture as (McConnell & Heine, 1984) 

average structure + C1 cos (Q.  r) + C2 sin (Q.  r), 

(1.1) 

where CI and (?2 are pure component difference 
structures, i.e. differences from the average structure. 
They are periodic in the lattice, the modulation being 
provided purely by the cosine and sine factors. Thus 
[average+ Ca] is the notional periodic crystal struc- 
ture observed at phase Q .  r -- 2nTr and [average - CI] 
at Q .  r = 2 ( n + l ) r r ,  where n is an integer. Similarly 
we have [average+ C2] at the ( l+4n)z r /2  and (3+ 
4n)zr/2 positions. It is important to note here that 
C] and C2 have different, but uniquely related, spatial 
symmetries. When the modulation wave vector qtc is 
near half a reciprocal-lattice vector, e.g. 

qic =½a * + Q ,  (1.2) 

then the ½a* is absorbed into C~ and C2 which become 
superlattice structures (in this example, 2x 1 x 1 
superstructures). The same is done in the superspace 
description. 

The relationship between the two descriptions has 
never previously been fully worked out, although it 
has been supposed that they must be equivalent. In 
particular, the superspace-group approach is formu- 
lated purely in terms of one modulated component, 
C] say, with no mention of the existence of C2. In 
deriving the superspace-group symbol for the IC 
phase of NaNO2, for instance, one considers the 
effect of the generators of the basic space group I m m m  
only on the ferroelectric ordered structure which we 
describe as [average + C1]: no mention need be made 
of the shear which is C2. We shall show that the two 
approaches are completely equivalent, and that the 
symmetry of (?2 is in fact contained within the super- 
space group when one uses the effect of the basic 
space-group generators on C~ or vice versa. 

How the symmetry of Ca implies that of (?2 in the 
superspace group is suggested by Fig. 1. The figure 
can be used to describe the structure in superspace, 
and we prefer to draw it slightly differently from de 

Wolff, with the r coordinate (which is Q .  r, the phase) 
on the vertical axis. The line r = 0  in the figure 
becomes a 3D hyperplane in (3 + 1)D space contain- 
ing the ideal structure C] or [average+ Ca]. Similarly, 
r = ~r/2, 7r, 3zr/2 define the 3D hyperplanes contain- 
ing the structures C2, - C ]  and -C2 respectively. The 
actual modulated structure is represented by the 
diagonal line in the figure, which has slope Q and 
corresponds to a 3D hyperplane in 4D superspace. 
We shall demonstrate this explicitly in the (1 + 1)D 
examples of § 2. The point we wish to make here is 
that because the symmetry of the whole (3 + 1)D space 
is given by a superspace group, the hyperplanes r = 0, 
7r/2, 7r, 37r/2 are the hyperplanes of special symmetry 
exactly analogous to the planes of special symmetry 
in ordinary 3D space groups. With the latter, it is 
perfectly clear both that the full 3D space group 
implies the 2D symmetry on all planes of special 
symmetry within the structure and that those 2D 
symmetries are related to one another since they are 
part of the same overall space group. The same is 
true in superspace. Thus the superspace-group sym- 
bol contains within it both the Ca and the (?2 sets of 
hyperplanes with their distinct symmetries and the 
relation between those symmetries. How this works 
out in practice is shown in the examples of §§ 2 and 
3. Then, in § 4, we prove that the precise relation 
between the symmetries of C~ and (?2 is the same 
from the superspace point of view as has already been 
derived by McConnell & Heine (1984) from the com- 
ponent approach. 

The two approaches also differ in their relationship 
to the traditional Landau theory (Lifshitz & 
Pitaevskii, 1980), where the symmetry of the ordered 
phase is specified by an irreducible representation of 
the space group of the disordered (or average) struc- 
ture. Basically the superspace approach has no con- 
nection with the Landau theory. It describes the 
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Fig. 1. Four-dimensional superspace % x, y, z (drawn here as % x) 

for describing incommensurate modulated structures. The 
diagonal line of(irrational) slope Q contains the actual structure. 
The horizontal lines become hyperplanes of special symmetry 
in superspace. These represent the pure 3D component difference 
structures + C1 and + (?2. Alternatively one may add the average 
structure and label them as [average + C1], [average + C2]. From 
a mathematical point of  view it is more convenient to work with 
the difference structures while adding the average structure gives 
a more easily visualized description of  the material. 
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symmetry of the IC structure per se in terms of a four- 
(or higher) dimensional group, and is not concerned 
with phase transitions or the relationship between the 
ordered and disordered phases. Thus it is broader 
and can include the symmetry of vernier structures 
that have nothing to do with phase transitions. Of 
course one can graft the Landau requirement onto 
the superspace theory afterwards, i.e. one can restrict 
one's choice of superspace group to those which 
correspond to irreducible representations of the disor- 
dered space group. This has not always been done, 
resulting in what we see as inappropriate assignments, 
as discussed elsewhere (Heine & Simmons, 1987). On 
the other hand the approach of McConnell & Heine 
(1984) is a development of the Landau theory and 
hence incorporates the symmetry requirement 
automatically. Thus the symmetries of the com- 
ponents C, and C2 are irreducible representations at 
q = 0 or other symmetry point such as ½a* in (1.2). 
This is a slightly different way of presenting the sym- 
metry from the conventional one in that the modula- 
tion cos (Q.  r), sin (Q.  r) has been factored out in 
(1.1). The reason for preferring the form (1.1) is that 
the role of symmetry elements turning Q into - Q  
becomes much more explicit. One finds that regions 
of even and odd character under these elements are 
separated in space in the standing wave (1.1). Thus 
C~ and C2 transform as irreducible representations 
of the group G±Q of elements which leave Q invariant 
or turn it into - Q ,  taken from the Landau space 
group of the disordered or average structure. 

The component description is not limited to purely 
sinusoidal modulations as in (1.1) and as previously 
discussed by McConnell & Heine (1984). As the tem- 
perature is lowered from the transition temperature, 
the modulation tends to square up in various ways 
(see e.g. Shaw & Heine, 1987) and one can insert 
such more general modulation functions into (1.1) in 
place of the sinusoids. If there is no further phase 
transformation, then the superspace-group symmetry 
cannot change and hence neither does that of the 
pure components C, and C2 since they are the sym- 
metries on the special hyperplanes of the superspace 
group. This is directly relevant when one is making 
the choice of superspace-group symbol for particular 
materi~ls, as discussed in Heine & Simmons (1987). 

The paired symmetries of C, and C2 have been 
tabulated for each (3+l)-dimensional superspace 
group by Simmons (1987). 

2. One-dimensional examples 

In this section, we will use a pair of simple examples 
to demonstrate how the difference structures C, and 
C2 fit into the supercrystal and how the symmetry of 
C1 (C2) within the context of the superspace group 
uniquely determines that of C2 (C~). We consider a 
one-dimensional crystal along x with a one- 

dimensional modulation also along x: so this is not 
merely a line symmetry within a fundamentally two- 
dimensional pattern. Two 1D space groups are pos- 
sible for the average structure of such a crystal. One 
(P1) contains only translations (see Fig. 2a). This is 
not very interesting as an average structure of an IC 
phase because the only possible symmetries of the 
2D superspace denoted (x, r) in the notation of de 
Wolff et al. (1981) are ( T a ) " ( x , r ) = ( x + n a ,  r -  
[Q.  ha]) (n being an integer). Since none of those 
turn Q into - Q  (i.e. G±o= Go),  an IC phase with 
such a basic structure falls into the category men- 
tioned by McConnell & Heine (1984) of materials 
too simple to support separate modes C, and C2; we 
shall not consider this case further. The other possible 
1D space group (Fig. 2b) has pairs of reflections (r, r') 
which are the 1D equivalents of what could be twofold 
rotation axes, inversion centres or mirror planes in a 
higher-dimensional space. We shall call these 'reflec- 
tions' so as not to prejudice our expectations of how 
they will function in the 2D superspace. The space 
group of such an average structure can be designated 
Pr. We shall take this as our average structure from 
here on. 

Let us take as our first example a crystal undergoing 
displacive modulation with wave vector Q. To begin, 
let us see how this structure looks in ( l + l ) -  
dimensional superspace. Since Q is being measured 
from the symmetry point q = 0, then C, and C2 have 
the lattice periodicity a. The elements of the average 
structure's space group, besides translations, are E, r 
and r', which turn Q into Q, - Q  and - Q ,  respectively. 
Then, according to McConnell & Heine (1984), C, 
and C2 must behave in the same way under E and 
in opposite fashion under r and r'. Two displacive 
difference structures satisfying these requirements are 
the one shown in Fig. 3(a), which is even under E, 
r and r', and the one shown in Fig. 3(b), which is 
even under E, but odd under r and r'. If we lay out 

r r '  r r '  r 

8 8 

(a) (b) 

Fig. 2. Patterns illustrating the two possible 1D space groups. (a) 
Space group P1. (b) Space group Pr; r and r' are 'reflections' 
which are the 1D equivalent of mirrors, inversion centres or 
twofold axes. 

L ! _- ~ I :~ I : 
"-  I -~" ~: ~- I ~ T = "  I - ~=: 

r r '  r r '  r r '  

(a) (b) 

Fig. 3. Two displacive difference structures in one dimension for 
a 1D IC crystal with q,c = Q. (a) Structure C, which is even 
under both r and r'. (b) Structure C2 which is odd under both 
r and r'. 
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a (1 + 1)-dimensional supercrystal in the manner of 
Fig. 1, the result looks like Fig. 4. The diagonal line 
represents the modulated crystal: because its slope 
(Q) is irrational only one 'atom' (shown here at the 
origin) lies precisely on a hyperplane of special sym- 
metry. 

Now, we shall turn from structure to symmetry and 
see how consideration of the symmetry of C~ in the 
superspace context determines that of C2. Since C~ 
is even under both r and r', we can represent its 
symmetry properties as indicated in Fig. 5(a). 
Extending this to superspace, we can fill in the 
r =  I7" and r = 2 1 r  hyperplanes as -C~ ( ' - - ' )  and 
C~('+ + ' ) ,  respectively. The result, shown in Fig. 
6(a),  clearly has twofold rotation axes as marked. 
But notice that between the pairs o f ' +  + '  and ' -  - '  
twofold axes lie what one might call anti-twofold 
axes, 2, which turn ' +  + '  into ' - - '  (see Fig. 6b). 
Then on the hyperplane z = 7r/2, the (?.2 m u s t  have 
the antisymmetry ' +  - '  (Fig. 5b) so that where C~ is 
even under r and r', C2 will be odd - exactly as 
required by McConnel l -Heine theory. Alternatively 
we may discover the symmetry of C2 without refer- 
ence to the anti-twofold axes. In Fig. 6(c) we have 
inserted a plus sign in a square on the hyperplane 
z =  ¢r/2, and then propagated it by using (a) the 
twofold axes shown in Fig. 6(a),  and (b) the fact that 
the structure on the hyperplane z = 3~r/2 has an extra 
phase factor of - 1  relative to that on ~" = I7"/2. These 
plus and minus signs could indicate positive and 
negative electron density for X-ray scattering in the 
difference structure. Now looking along the line 

2/ r  

3,n ' /2 

17" 

~ ' / 2  

0 

" " " " ~ " / / " "  " e.. 
: . .  j . .  .. s . . .  

• -" % o : "  ".  ,~ ." ' .  

'" : "  ' - ~  '" "" ~1, - ' ~  "' 
: 

. . 
" " ' ' -  .."L, 

0 a 20 

Fig. 4. ( l+ l ) -d imens iona l  supercrystal encompassing the dis- 
placive difference structures of Fig. 3 in the manner  indicated 
by Fig. 1. The diagonal line of (irrational) slope Q represents 
the modulated 1D crystal. Atomic positions in superspace are 
indicated by the dotted and dashed lines. 

* *  i * *  * *  El ll3r ll  
r r '  r r '  r r r '  r r '  • 

(a) (b) 

Fig. 5. Symmetries of the difference structures of Fig. 3. (a) Sym- 
metry of C~, even under both sets of reflections. (b) Symmetry 
of C2, odd under  both sets of  reflections. 

(hyperplane) ~" = ~-/2 we see that the pure C2 com- 
ponent is odd under the reflection r at x = a and odd 
under r' at x = a/2. So we again reach the symmetry 
pattern of Fig. 5(b). The 2D space group containing 
the symmetries of Fig. 6(b) is P2; using notation 
analogous to that of de Wolff et al. (1981), we can 
also write it as the (1 + 1)-dimensional superspace 

2/T 

3.~/2 

/r 

~r/2 I 

0 

2'rr 

3 ~ ' / 2  

.n" 

= / 2  

0 

+ ® +  ® + ® +  ® + ® +  

- ® -  ® - ® -  ® - ® -  

+ ® +  ® + ® +  ® + ® +  

I I I 
0 a 2a  

(a) 

+ ® +  ® + ® +  ® + ® +  

® ® ® ® ® 

- ® -  ® - ® -  ® - ® -  

® ® ® ® ® 

+ ® +  ® + ® +  ® + ® +  
I I I 
0 a 2a  

(b) 

2rr  

3-n' /2 

~- /2  

® ® ® ® ® 

l-Zl ~ l~ EEl 
® ® ® ® ® 

................ EEt--~ ............ ~ - - ~  ............. 
® ® ® ® ® 

I I I 
0 a 2a  

(c) 

Fig. 6. The symmetries of the supercrystal with q~c = Q. (a) 
Extending the known symmetries of C1 (Fig. 5a) into superspace 
produces this pattern of twofold rotation axes. But these axes 
imply the existence of other 'anti-twofold' axes, denoted 2, 
between them as shown in (b). From (b) we deduce that the 
symmetries of  C2 must  be as shown in Fig. 5(b). In (c) we derive 
the symmetries of  C2 by an alternative route, starting with a 
'plus sign in a square' on the 7r/2 hyperplane and propagating 
it via the twofold axes while remembering that the zr/2 and 
3~r/2 hyperplanes are in antiphase with respect to one another. 
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group P ~  (P  means  qlc - -  Q, Pr is G ,  o of the average 
structure, and T means  r sends Q to - Q  and r to 
-~'). For simplicity we shall be writing superspace- 
group symbols all on one line with colons separating 
the parts written by de Wolff et al. (1981) as super- 
scripts and subscripts; for example,  the group we 
have just ment ioned above would be designated 
P: Pr: 1 in our notation. 

For our second example,  we consider a 1D crystal 
modula ted  with q ~ c = Q + ½ a  *. This will have 
difference structures C1 and (72 with the periodicity 
2a of a twofold superstructure. Starting from the 
symmetry point  of  view, we can choose C~ to be odd 
under  r and even under  r' (see Fig. 7a).  Then the 
symmetry picture of superspace is as shown in Fig. 
8, where the symmetry points in parentheses are 
impl ied by the presence of those arising from C~. So 
the symmetry of  C2 must have the form indicated in 
Fig. 7(b), which is even under  r and odd under  r' - 
again as predicted by McConne l l -He ine  theory. The 
2D space group of Fig. 8 is again P2, though one 
could call it C2, and the (1 + 1)-dimensional  super- 
space group is C: P 2 : l  (where C tells us that q~c = 
Q + ½a*). Turning to structure, we consider an order- 
ing modula t ion  as a change. A pair of  structures 
[average+ C~] and [average+ Cz] with the required 
symmetries are depicted in Figs. 9(a)  and (b);  the 
'+ '  and ' - '  symmetries have become different atoms 

.- i-P, ÷ -  ÷ ÷  
r r ' r (' r r 

- -  + ' l "  

r' r r ' • 

2a 2a 

(a) (b) 

Fig. 7. Symmetries of the difference structures for a 1D IC crystal 
with qic = Q+½a*. (a) Symmetry of what we shall call Ct. This 
is odd under r and even under r'. (b) Symmetry of C2: even 
under r and odd under r'. This symmetry is implied once the 
symmetry of Ct is chosen. 

2~- 

3 ~ / 2  

/r 

~r/2 

+ ® -  ® - ® +  ® + ® -  

(2) (~.) (2) (;~) (2) 

- ® +  ® + ® -  ® - ® +  

( 2 ) 1~.1 (2) (:~) (2) 

+ ® -  ® - ® +  ® + ® -  
I I I 
0 2a 4a x 

Fig. 8. The symmetries of the (1 + 1)D supercrystal of the 1D IC 
crystal with qlc = Q+½a*. The twofold and 'anti-twofold' axes 
which arise directly from extending the symmetry pattern of C1 
through superspace imply the existence of the additional axes 
shown m parentheses. 

called 'A '  and 'B' .  The supercrystal will therefore 
have the structure of Fig. 10. 

It should be noted that, in each of the examples,  
it would have been possible to start from the symmetry 
of C2 and derive that of  C~. Similarly, either super- 
space group could equal ly well represent IC phases 
whose modula t ion  resulted from displacive or order- 
ing mechanisms.  

3. Sodium nitrite 

Since 3D crystals and their supercrystals are not as 
easy to draw on a fiat page as are the 1D examples  
of  the preceding section, we shall next demonstrate  
how to handle  a 3D example:  NaNO2.  The symmetry 
of IC NaNO2 has already been dealt with both in the 
superspace approach  (Janssen & Janner,  1980) and 
in the M c C o n n e l l - H e i n e  theory (Heine, Lynden-Bell ,  
McConnel l  & McDonald ,  1984). What we shall be 
focusing on is how the symmetry of C~ determines 
that of  C2 in the superspace point of  view. The way 
the symmetries of  the difference structures fit into the 
superspace group will be presented in a slightly 
different format  which relies less heavily on visualiz- 
ation. 

To begin, we review the relevant facts about  
NaNO2.  First, the space group of the average high- 
temperature structure is Immm, and so the basic space 
group of  the supercrystal,  G± o (see Heine & Sim- 
mons, 1987) is also lmmm. Secondly, the modula t ion  
wavevector, qic = Q is along the a* axis. Finally,  one 
of  the component  difference structures, call it G ,  is 

: _+ ,: B~B :l~ A- 
r r '  • r" • • r '  • r '  r 

(a) (b) 

Fig. 9. Two possible ordering difference structures in one 
dimension with the symmetries indicated in Fig. 7. The letters 
A and B represent two different kinds of atoms. (a) Structure 
Ct which is odd under r and even under r. (b) Structure C2 
which is even under r and odd under r'. 
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2rr 

3~12 

"rt 

n12 

0 

A B B A  A B B A  A B 

B B A A B B A A B B 

B A A B B A A B B A 

A A B B A A B B A A 

A B B A A B B A A B 

I I I 
0 2a 4a 

Fig. 10. (1 + 1)-dimensional supercrystal incorporating the order- 
ing difference structures of Fig. 9 in the manner indicated by 
Fig. 1. 
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known to be the ferroelectric ordering of N O 2  groups 
along the b axis (see Fig. 11). 

From these facts, we can extract the symmetry of 
C~. All that is necessary is to consider how each 
generator of the basic space group acts on CI as 
drawn in Fig. 11. Elements E, mx and m= certainly 
leave it invariant, my on the other hand reverses the 
NO2 polarization, in effect changing the modulation 
phase by zr and changing C1 to -C~.  So the effect of 
I m m m  on the structure [average+ C~] is 

E :  x y z C l  -> x y z C1 

mx: x y z C a - > - x  y z C1 

my:  x y z Cg-~  x - y  z - C a  

rn=: x y z C~ -> x y - z  C1.  

(3.1) 

This structure has as symmetry elements E, mx, mz 
and, therefore, also 2y, that is, it has space-group 
symmetry I m 2 m .  

If we now consider C~ to be some hyperplane 
7. = constant (since CI itself is a pure unmodulated 
structure) of a (3+l ) -d imensional  superspace, the 
behaviour of C~ and Q under the generators of I m m m  

will define the symmetries of the superspace and lead 
us, thereby, to (?2. We have just listed the effects of 
the generators on C~; note that if Ca corresponds to 
phase 7.--7.0, then -C~ must correspond to phase 
r = 7.0 + zr. Thus my plus a phase shift of 7r becomes 
a symmetry element in 4D space. Of the four gen- 
erators, the only one which sends Q to - Q ,  and hence 
7. to - r ,  is mx: hence reversing x and going to phase 
- 7. is a symmetry element in 4D. The other generators 
leave Q untouched. We can summarize these sym- 

(3.2a) 

metry elements as 

E :  x y z T.-> x y z 7. 

mx:  x y z T . - ->-x  y z - 7 .  

my:  x y z r -> x - y  z r + z r  

m=: x y z T.-> x y - z  7., 

O or" " 
3 

0 3 o 
t ' h  
v 

(a) (b) 

Fig. 11. The component structures of IC NaNO2. (a) C1: the 
ferroelectric ordering of the NO 2 groups along the b axis. The 
shaded atoms are on a bc plane which lies ½a below the others. 
(b) C2: shear in the ab plane. The dotted lines indicate how the 
shear affects the atomic positions. The shaded atoms correspond 
to those shaded in (a). 

and the multiplication table of I m m m  easily yields 
the remaining symmetries: 

I :  x y z r - >  - x  y z - 7 . + z r  

2,,: x y z ~ -~ x - y z z + Tr 

2y: x y z r - >  - x  y - z - r  

2=: x y z T. -> - x - y z -  r + zr. 

(3.2b) 

Note that (3.2a) is another way of saying that the 
superspace group of IC NaNO2 is P: I m m m :  l s l ;  s 
is the shift along 7. by zr and 1 is the change of sign 
of r, just as discussed in de Wolff et  al. (1981). Since 
we know which elements of this superspace group 
are symmetry elements of CI, it is easy to see that C1 
corresponds to the hyperplane z = 0. The hyperplane 
z = zr which we would expect to correspond to -C1 
has the same set of symmetries (since 77- and -z r  are 
the same modulo 2zr) just as it ought to. However, 
these are not the only hyperplanes of special sym- 
metry. Consider 7.-- 7r/2. This is left invariant by E, 
/, mz and 2z, so it has special symmetry as well. The 
same goes for 7. = 3zr/2. There being no other planes 
7. = constant with higher symmetry than {E, mz}, these 
two hyperplanes must correspond to C2 and -(?2 and 
the symmetry of (?2 is uniquely determined. 

In the course of the above discussion, we started 
by assuming C1 to lie on an arbitrary hyperplane 7.0 
and ended by seeing it fixed on the zero hyperplane. 
That fixing of the location of C~ has two causes. First, 
we have represented moving from C~ to -C1 by a 
phase shift of zr; this confines C~ to one of the 
hyperplanes 7. = 0 or 7-= rr/2, as is clear from (3.2). 
Second, in choosing between those two hyperplanes 
we have made a choice of origin, selecting the inver- 
sion operation to be represented as sending 7. to 
- 7. + zr rather than to - 7.. 

Clearly the identification of C1 and C2 with the 
hyperplanes of the superspace corresponds to what 
one would have expected from Fig. 1. However, the 
relation of CI and C2 is also in accordance with 
McConnell-Heine theory. We have already discussed 
the effects of the generators of G± o on C1; a quick 
look at (3.2a, b) for 7. = ~ / 2  shows that any element 
of G+Q sending Q to Q is a symmetry of both C~ and 
C2 or of neither, while any element sending Q to - Q  
is a symmetry of one but not of the other. 

It is important to realize that one could equally 
well have started from Ca and built up the same 
superspace group and, hence, the symmetry I m 2 m  

for C1. Heine et  al. (1984) have shown that the struc- 
ture C2 corresponds to the shear of the unit cell in 
the xy plane. Of the generators of I m m m ,  the only 
one leaving this invariant are E and mz;  both m x  and 
my change (?2 to what can only be described as -(?2. 
Knowing this, and knowing how the generators act 
on Q (still along a*), we can take C2 to lie on a 
hyperplane 7. = constant of the superspace and write 
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down the symmetries of the supercrystal based on 
those of C2: 

E :  x y z ~ "  --~ x y z ~- 

mx: x y z T- ---> - x  y z - 7 " +  I7" 

my: x y z r  ~ x - y  z r +  7r 

m z :  x y z r  ~ x y - z  

I :  x y  z r ----> - x  - y  - z  -7"  (3.3) 

2x: x y z T- ----> x - y  - z  z + I7" 

2y: x y z r ---~ - x  y - z  - r  +Tr  

2z: x y z r ---> - x  - y  z - r .  

In this description we see that C2 lies along the 
hyperplane r=0 ,  and the hyperplane r =  7r/2 may be 
seen to correspond to the symmetry of the ferroelec- 
tric ordering, C1. The superspace group summarizing 
(3.3) is P : I m m m : g s l ,  which is equivalent to 
P :  I m m m : l s l  since the only difference is a change 
by 7r of the origin to which the elements sending Q 
to - Q  is referred. The symbol g, meaning r-->-r + 7r, 
is a slight extension of the notation of de Wolff e t  al. 

(1981) who represent all elements involving inversion 
of r by 1. Their argument is that one can always 
choose the origin such that the shift is zero for a given 
group element containing inversion. However, since 
there are some superspace groups which include both 
the symmetries ~'-->-z and r-->-r+rr, we find it less 
confusing to choose a single origin and denote the 
two types of elements by 1 and g respectively. In any 
case, we have seen that in determining the superspace 
group of an IC material from G±Q, Q, and the sym- 
metry of one difference structure, one obtains the 
same superspace group whether the symmetry of C~ 
or of C2 is considered. 

4. The general proof 

Having demonstrated the equivalence of the two- 
component and superspace descriptions of IC 
materials by example in the preceding sections, we 
now prove it more generally. Specifically, we shall 
prove that the superspace group must contain within 
itself the symmetries of both C~ and C2 and that the 
relation between those symmetries is exactly as given 
by McConnell-Heine theory. This implies that if the 
superspace group and the symmetry of one difference 
structure, say C~, are known, then the symmetry of 
the other difference structure, Cz, is completely and 
uniquely determined. 

We shall begin by assuming that the superspace 
group, the direction of the modulation wave vector 
Q and the symmetry properties of one difference 
structure are known, but that nothing is known about 
any possible second difference structure. The first step 
must be clarification of the relationship between the 

pieces of information we do have. The superspace 
group is given by a symbol containing a 3D space 
group (the basic space group) on the upper right, a 
group to which the (3+ 1)-dimensional superspace 
group is isomorphic apart from increments of 27r in 
the fourth dimension, ~" (de Wolff e t  al . ,  1981). As 
proven by Heine & Simmons (1987), this basic group 
must be the subgroup G ±  o of the full symmetry group 
G of the average high-temperature structure, as long 
as the IC phase has been reached from the disordered 
one by a single second- (or nearly second) order phase 
transition. Further, according to the Landau sym- 
metry theorem also discussed in that paper, the 
difference structure (and order parameter) C1 of the 
IC phase must transform according to an irreducible 
representation of G±Q. So from the symmetry point 
of view the superspace group, Q and the symmetry 
of C~ are closely and precisely related. From the point 
of view of structure, this relationship can be expressed 
in a slightly different way. The structure of the IC 
material can be divided into an average (unmodu- 
lated) portion and the difference structure C~ which 
is modulated by a periodic function f ( Q .  r). This 
modulation function may be expressed as a Fourier 
series: 

f ( Q .  r) = 5-'. f ,  e x p ( i n Q . r ) / ~ f n  
n r l  

(n an odd integer), (4.1) 

which is normalized simply so that pure ordering in 
terms of C~ will always be represented by a modula- 
tion factor of unity, no matter what the form of 
f ( Q .  r). For T not too far below the transition tem- 
perature, only the fundamental is present so (4.1) 
reduces to 

f ( Q .  r) =cos (Q.  r), (4.2) 

which is familiar from (1.1). As mentioned in § 1, the 
distance along the modulation wave, Q .  r = r, forms 
the fourth dimension of the supercrystal. The 3D 
unmodulated structure [average+C~] lies on the 
hyperplane r = 0 of superspace; C~ therefore has the 
symmetry properties of that hyperplane. We shall 
explore the link between these two points of view in 
order to derive the existence and symmetry of C2. 
The full proof will be worked on the assumption that 
the irreducible representation by which C~ transforms 
is one-dimensional; the continuation of the proof to 
the higher-dimensional case will also be discussed. 

Since the superspace group of the IC phase is 
(3 + 1)-reducible and isomorphic to the basic group 
G~.Q (de Wolff e t  al . ,  1981), we can explore the sym- 
metry of superspace by considering the effects of the 
elements of G±Q on the coordinate r. As r is single- 
dimensional, it may be inverted, shifted or a combina- 
tion of the two. So the possible actions of elements 
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of G±Q on z are 

(4.3) 

Table 1. Effect o f  r transformations on pure com- 
ponents C1 and C2 

T " ~  T T-"~ T +  "iT T'-'> - - T  I"'> -- '7"+ "17 

C l ( r = 0 )  1 - 1  1 - 1  
C2(r  = rr/2) 1 - 1  - 1  1 

r-> - ' r  + ~o. 

Clearly the elements involving an inversion of z are 
those which send Q to - Q ;  the others belong to GQ. 
But what limits, if any, are there on the phase shifts 
~p ? Here it is crucial that the hyperplane at ~" = 0 (Cl) 
transforms according to an irreducible representation 
of G±o, for an element of G±Q can therefore only 
turn C1 into another member of the same invariant 
subspace. Since we are considering one-dimensional 
irreducible representations, G± o can only turn C1 
into + C~. As C1 exists at phase 0 along the modulation 
wave in the IC phase, we must find -C1 at phase zr. 
Thus ~ in (4.3) can only have the value ~. 

Now let us consider which of the operations (4.3) 
can be symmetries of a general hyperplane r = to. Of 
those resulting from GQ, the operation ro~ ro is 
always a symmetry and t o -  ro + ~r never is, no matter 
what the value of ~'o. The other two cases are more 
restricted: r o ~ - t o  is a symmetry only of the hyper- 
planes ro = 0 and ro = rr, while r 0 -  - r0  + zr is a sym- 
metry only for ro = zr/2 or 3zr/2. So ro = 0, ~r/2, 7r, 
37r/2 are hyperplanes of special symmetry within 
superspace. 

We have already noted that the pair of special 
hyperplanes r = 0 ,  7r correspond to C~ and - C l  
respectively, but we still need to account for the 
second pair. At r = zr/2 we have f ( Q .  r) = 0, so that 
the IC structure contains no C~ ordering at this phase 
along the modulation wave. However, the hyperplane 
zr/2 has as symmetries all elements of G±Q which 
send r - r or r-> - r + zr. This group of elements may 
clearly be either G±Q or a subgroup thereof; in any 
case, it is necessarily different from the symmetry 
group of C1. The (commensurate) structure of the IC 
material at phase r = zr/2 must have the symmetry of 
the r = zr/2 hyperplane. Then as long as the symmetry 
at zr/2 is lower than that of G±o, there must be a 
second difference structure, call it (72, of lower sym- 
metry than G±Q such that the full structure of the 
material at r = zr/2 is [average+ C2] which has the 
(lower) symmetry of C2. The only exceptions are 
materials whose structures are too simple to support 
any ordering or displacive structure of symmetry (72. 
Likewise, if the symmetry at z =  I7"/2 is G±Q, there 
will be a second difference structure of symmetry G±Q 
except in the case of materials with very simple struc- 
tures. In order for this C2 to be present throughout 
the IC crystal wherever Q .  r =  ~ /2  (and hence for 
-C2 to appear at 3zr/2) but not at the points'0 and 
zr, which we know to have the different symmetry of 
pure Ct, the difference structure C2 must be modu- 

lated by a periodic function g (Q.  r+  zr/2). We could 
expand this function g as a Fourier series as we did 
with f, and just below To, it would have the form 
cos (Q.  r+  zr/2) -- sin (Q.  r). Thus in an IC material 
described by a (3 + 1)-dimensional superspace group 
there must exist two difference components C1 and 
C2 modulated 90 ° out of phase, just as stated in 
McConnell-Heine theory. 

Having discovered (72, we need to examine its 
symmetry properties more closely; we shall use the 
symmetry properties of C1 as a guide. Since C~ trans- 
forms like a one-dimensional irreducible representa- 
tion of G±Q, we can construct the representation by 
considering whether a given element of G± o sends 
Cl to Cl (X = 1) or -C~ ( X = - 1 ) .  However, C~ has 
the same symmetry as the hyperplane r = 0, and G±Q 
is isomorphic to the superspace group with z, so it is 
possible to construct an equivalent representation of 
G±Q by considering whether an element of G± o sends 
r = 0 to itself (X = 1) or to r = zr (X = - 1). The hyper- 
plane r =  7r/2 is likewise even or odd under any 
element of G±Q, so another 1D representation of G±Q 
can be made by considering whether an element of 
G± o sends r =  zr/2 to itself (X = 1) or to r =  317"/2 
(X = -1) .  The result is clearly not merely an equivalent 
representation to the one given by r =  0. Since the 
hyperplane z = 7r/2 has been shown to be related to 
a difference structure, C2, just as r = 0 is to C1, this 
C2 also transforms according to an irreducible rep- 
resentation of G±Q, a representation equivalent to 
that given by the action of G±Q on r =  7r/2. The 
character table for these two representations is shown 
in Table 1. From the table we observe that the sym- 
metry relation of C~ and C2 is exactly that given by 
McConnell-Heine theory: they behave the same 
under elements of G o and oppositely under elements 
sending Q to - Q .  This can also be seen if one labels 
each element sending ro to ry by 

exp [ i( rf - ro) ]; (4.4) 

the representation based on Zo = 17"/2 has an extra 
factor of exp (-iTr) relative to that based on r0 = 0 
for elements of G± o sending Q to - Q .  The desired 
results have now been proven for the case of 1D 
irreducible representations. 

Next we shall extend our proof to cover the cases 
where C1 transforms according to an irreducible rep- 
resentation of G±Q which is not one-dimensional. For 
the basic space groups of crystals with a 1 D modula- 
tion, the most common other kinds of irreducible 
representations existing are 2D real representations 
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and 2D representations composed of paired complex- 
conjugate 1D representations; there are also a few 
cases (e.g. hexagonal) of 4D real representations and 
paired complex-conjugate 2D and 4D representations 
(see de Wolff et al., 1981; Bradley & Cracknell, 1972; 
Heine, 1960). Then if we look at one basis vector of 
this 2D invariant vector space, G±Q can clearly mix 
it with the other basis vector as well as with itself. 
Where for the 1D case C~ corresponded to the unit 
vector of a 1D space, C~ now corresponds to the unit 
circle of a 2D vector space and G±Q can rotate that 
circle by amounts which need not be restricted to 0 
or 7r. Thus 9 in (4.3) is no longer forced to take the 
sole value of 7r. The possible values are, however, 
restricted by the requirements of group multiplica- 
tion; then n repetitions of an 'n-fold'  element (count- 
ing mirrors as twofold) must return r to its starting 
point. Since only two-, three-, four- and sixfold crys- 
tallographic elements exist, 9 must be one of rr, 27r/3, 
rr/2 or ~ /3 .  

Having loosened the restrictions on 9, one now 
proceeds as before with the derivation of the existence 
and symmetries of C2. C, still corresponds to r = 0 
and r = 7r/2 must contain C2 for the same reasons 
adduced earlier. The main change from the 1D case 
is that extra planes of special symmetry now exist 
wherever r = - r +  9 has a solution other than r = 
mr~2 (n an integer). These do not require the 
existence of further order parameters, however, since 
there are no points w h e r e f ( Q ,  r) = g (Q .  r'+ zr/2) = 0. 
Moreover, the action of G±Q on these planes r = 9 / 2  
does not give rise to irreducible representations of 
G±Q; as long as the Landau symmetry theorem is 
deemed to apply, this means that these planes cannot 
correspond to order parameters. 

One can again construct irreducible representation 
for G±Q from its actions on r = 0  and rr/2. The 
appropriate generalization of the procedure used 
before is labelling an element of G±Q which sends 
ro-~ rf by 

exp [ i(rf - to) ] ( 4.5a ) 
exp[- i (r f -ro)]  

if C~ transforms according to a pair of 1D complex- 
conjugate representations or, equivalently, by 

exp [ i (~?-  ~'0)] + exp [ - i ( ~ ? - % ) ]  = 2 cos (~'f- ¢0) 

(4.5b) 

if C~ transforms according to a real 2D representation. 
Expression (4.5a) essentially gives the separate com- 
ponents D~ 1 and D22 of the trace of the representation 
matrix D, while (4.5b) gives the whole trace, D ~ +  
D22. The relationship between the symmetries of C~ 
and C2 is the same as in the 1D case; this may be 
seen by the essential similarity of (4.4) and (4.5a, b). 

It should be noted that C, and C2 may either belong 
to the same 2D irreducible representation of G± o at 

Q = 0 or to separate ones. In the first case, the struc- 
tures C~ and C2 must arise from the same physical 
mechanism since they are mixed by G+Q. One 
example may be found in phase I II biphenyl, 
where C1 and C2 both belong to the single 2D 
irreducible representation of G±Q=P2~/a at ½b*; 
both ordering modes are based on combinations of 
the translations, librations and internal torsion 
of two pairs of molecules within the unit cell 
(Heine & Price, 1985). In the second case, C1 and C2 
may involve physically different kinds of ordering 
as observed, for example, in mullite (McConnell & 
Heine, 1985). 

Having discussed the case of a simple one- 
dimensional modulation in detail, we shall now out- 
line how the ideas may be applied to modulations 
whose wave vectors have more than one component. 
Within this group of IC phases, there are several 
distinct possibilities to be considered. Starting with 
the example of a phase whose wave vector points 
along an arbitrary direction in the a 'b*  plane, we 
see that the modulation may act either as 
cos [q. ( a + b ) ]  or as cos (q. a) cos (q. b). The first 
corresponds to a one-dimensional modulation in an 
arbitrary direction (making a 'striped' pattern in the 
ab plane) and the second to a truly two-dimensional 
modulation with independent vectors qx and qy with 
four symmetry-inequivalent McConnell-Heine 
difference structures C~x, C2x, C~y and C2y (making 
a 'quilted' pattern). Similar distinctions may be drawn 
among the several kinds of IC phases possible when 
the wave vector has components along all three crystal 
axes. 

Once that distinction has been made, the extension 
of our discussion about the relationship between the 
superspace and McConnell-Heine descriptions of IC 
phases is simple. The choice of the basic space group 
of the superspace group for the cases in which the 
wave vector has more than one component has been 
discussed in Heine & Simmons (1987). In essence, 
the basic space group is the subgroup of the high- 
temperature space group G which sends each 
independent component of q (each component corre- 
sponding to a separate pair of difference structures) 
to itself or minus itself. Thus, the phases which make 
'striped' patterns are not fundamentally different from 
the sirflple one-dimensional phases we have already 
discussed; they have only one pair of difference struc- 
tures C, and C2 and a ( 3 + l ) D  superspace group. 
Those which make any sort of 'quilted' pattern, i.e. 
those with more than one pair of symmetry- 
inequivalent difference structures, must be described 
by a (3 + n)D superspace group where n is the number 
of pairs of difference structures. The extra n coordi- 
nates of the superspace group may be labelled r,  and 
the difference structures C1, and C2, correspond to 
the hyperplanes of special symmetry located at ~', = 0 
and z, = 7r/2. 
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Abstract  

Skewness in atomic probability density functions can 
be represented by odd-order cumulants in the 
Edgeworth expansion about a Gaussian distribution, 
or by odd-order quasi-moments in the Gram-Charlier 
expansion. In the case of the Edgeworth expansion 
it is known that the absolute values of some odd-order 
cumulants cannot be determined from Bragg reflec- 
tion data for non-centrosymmetric structures - 
because these cumulants affect only the phases of the 
calculated structure factors and not their magnitudes. 
It is shown that, in general, this problem is imposed 
by the form of the Edgeworth expansion and can be 
avoided by using the Gram-Charlier expansion 
instead. An example is given of the refinement of 
third-order quasi-moments for the non-centrosym- 
metric phase of PbTiO3, using neutron-diffraction 
data collected at the Institut Laue-Langevin, 
Grenoble. 

Many interesting phenomena are manifested in 
departures of atomic probability density functions 
(p.d.f.'s) from a purely harmonic form; and the anhar- 
monicity of p.d.f.'s can be investigated with accurate 
high-resolution X-ray or neutron diffraction data. A 
widely used method of modelling anharmonicity in 
least-squares structure refinements is based on the 
Edgeworth expansion of the p.d.f. (Johnson & Levy, 
1974), which gives the following form for the structure 
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factor up to sixth-order terms (Kuhs, 1983): 

FEw(h ) = ~ b, exp [ i(2~rx, h j -  KJkthjhk h, 
i 

+ K~ kl''' h;hkhthmh,,) 

_ (fl~k hjhk - K~ktmhjhkhlh,,, 
jklmno 

+ g i hjhkhthmhnho)], (1) 

where the summation is over the atoms in the unit 
cell (the repeated-index summation convention is 
assumed for the indices j, k, l , . . . ) ,  bi are the atomic 
scattering lengths (form factors for X-rays), x~ and 
fl~k are the positional parameters and the harmonic 
thermal parameters, and K jkl''" are  the anharmonic 
parameters. These last are known as cumulants. The 
odd-order cumulants model antisymmetric anhar- 
monicity, or 'skewness', in the p.d.f.; and the even- 
order cumulants model symmetric anharmonicity, or 
'kurtosis'. In practice, it is usually sufficient to include 
only the third- and fourth-order cumulants in a struc- 
ture refinement, and it is rarely, if ever, warranted to 
attempt to refine terms higher than sixth order. 
Though generally effective, this approach to anhar- 
monicity suffers the serious limitation that it is pos- 
sible to determine only the relative magnitudes of 
odd-order cumulants whose signs are not reversed by 
the space-group operations (Hazell & Willis, 1978). 
This is because increasing or decreasing such a 
cumulant by the same amount for all atoms - as the 
symmetry then permits - alters the phase but not the 
magnitude of the calculated structure factors [see (1)]. 
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